Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.1...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1103/physre...
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
CONICET Digital
Article . 2023
License: CC BY
Data sources: CONICET Digital
https://dx.doi.org/10.60692/qv...
Other literature type . 2023
Data sources: Datacite
https://dx.doi.org/10.60692/jh...
Other literature type . 2023
Data sources: Datacite
https://dx.doi.org/10.48550/ar...
Article . 2023
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 8 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Rényi entropies in the n→0 limit and entanglement temperatures

إنتروبيا Rényi في حد n→0 ودرجات حرارة التشابك
Authors: César A. Agón; Horacio Casini; Pedro J. Martínez;

Rényi entropies in the n→0 limit and entanglement temperatures

Abstract

Les températures d'enchevêtrement (ET) sont une généralisation des températures Unruh valables pour les états réduits à n'importe quelle région de l'espace. Ils codent de manière thermique le comportement à haute énergie de l'état autour d'un point. Ces températures sont déterminées par une équation eikonale dans l'espace euclidien. Nous montrons que la poursuite en temps réel de ces équations implique une propagation balistique. Pour les théories avec un point fixe UV libre, l'ET détermine l'état à une grande température modulaire. En particulier, nous montrons que la limite $n\ensuremath{\rightarrow}0 $ des entropies R\'enyi ${S}_{n}$ peut être calculée à partir de l'ET. Cela établit une formule pour ces entropies R\'enyi pour n'importe quelle région en termes de solutions des équations eikonales. Dans la limite $n\ensuremath{\rightarrow}0 $ , la propagation pertinente de l'état à haute température est déterminée par une équation de Boltzmann relativiste libre, avec une tour infinie de courants conservés. Pour le cas particulier des états et des régions avec une symétrie de Killing conforme, ces équations coïncident avec celles d'un fluide parfait.

Las temperaturas de entrelazamiento (ET) son una generalización de las temperaturas Unruh válidas para estados reducidos a cualquier región del espacio. Codifican de forma térmica el comportamiento de alta energía del estado alrededor de un punto. Estas temperaturas están determinadas por una ecuación eikonal en el espacio euclidiano. Mostramos que la continuación en tiempo real de estas ecuaciones implica propagación balística. Para las teorías con un punto fijo UV libre, el ET determina el estado a una temperatura modular grande. En particular, mostramos que el límite de $n\ensuremath {\rightarrow}0 $ de las entropías R\'enyi ${S}_{n}$ se puede calcular desde el ET. Esto establece una fórmula para estas entropías R\'enyi para cualquier región en términos de soluciones de las ecuaciones eikonales. En el límite $n\ensuremath{\rightarrow}0 $, la propagación relevante del estado de alta temperatura está determinada por una ecuación de Boltzmann relativista libre, con una torre infinita de corrientes conservadas. Para el caso especial de estados y regiones con una simetría de Killing conformal, estas ecuaciones coinciden con las de un fluido perfecto.

Entanglement temperatures (ET) are a generalization of Unruh temperatures valid for states reduced to any region of space. They encode in a thermal fashion the high-energy behavior of the state around a point. These temperatures are determined by an eikonal equation in Euclidean space. We show that the real-time continuation of these equations implies ballistic propagation. For theories with a free UV fixed point, the ET determines the state at a large modular temperature. In particular, we show that the $n\ensuremath{\rightarrow}0$ limit of R\'enyi entropies ${S}_{n}$ can be computed from the ET. This establishes a formula for these R\'enyi entropies for any region in terms of solutions of the eikonal equations. In the $n\ensuremath{\rightarrow}0$ limit, the relevant high-temperature state propagation is determined by a free relativistic Boltzmann equation, with an infinite tower of conserved currents. For the special case of states and regions with a conformal Killing symmetry, these equations coincide with the ones of a perfect fluid.

درجات حرارة التشابك (ET) هي تعميم لدرجات حرارة أونرو الصالحة للحالات المخفضة إلى أي منطقة من الفضاء. إنها تشفر بطريقة حرارية سلوك الطاقة العالية للدولة حول نقطة ما. يتم تحديد درجات الحرارة هذه بواسطة معادلة أيكونية في الفضاء الإقليدي. نظهر أن استمرار هذه المعادلات في الوقت الفعلي يعني الانتشار الباليستي. بالنسبة للنظريات ذات النقطة الثابتة للأشعة فوق البنفسجية الحرة، يحدد ET الحالة عند درجة حرارة معيارية كبيرة. على وجه الخصوص، نظهر أنه يمكن حساب الحد $n\ ensuremath {\ rightarrow}0 $ من إنتروبيا R \' enyi ${S}_{n }$ من ET. هذا ينشئ صيغة لهذه الإنتروبيات R \' enyi لأي منطقة من حيث حلول المعادلات الأيقونية. في حد $n\ensuremath {\rightarrow}0 $، يتم تحديد انتشار الحالة ذات درجة الحرارة العالية ذات الصلة من خلال معادلة بولتزمان النسبية الحرة، مع برج لانهائي من التيارات المحفوظة. بالنسبة للحالة الخاصة للحالات والمناطق ذات تماثل القتل المطابق، تتزامن هذه المعادلات مع معادلات السائل المثالي.

Keywords

Quantum Field Theory, High Energy Physics - Theory, Information Theory, FOS: Physical sciences, Renyi Entropy, Thermodynamic Efficiency, Quantum mechanics, Mathematical analysis, Quantum Many-Body Systems and Entanglement Dynamics, https://purl.org/becyt/ford/1.3, FOS: Mathematics, https://purl.org/becyt/ford/1, Stochastic Thermodynamics and Fluctuation Theorems, Physics, Statistical and Nonlinear Physics, Limit (mathematics), Casimir Effect Research, Atomic and Molecular Physics, and Optics, High Energy Physics - Theory (hep-th), Physics and Astronomy, Analytic continuation, Unruh Effect, Mathematical physics, Physical Sciences, Eikonal equation, Mathematics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
hybrid