
Abstract With the rapid evolution of the distributed computing world in the last few years, the amount of data created and processed has fast increased to petabytes or even exabytes scale. Such huge data sets need data-intensive computing applications and impose performance requirements to the infrastructures that support them, such as high scalability, storage, fault tolerance but also efficient scheduling algorithms. This paper focuses on providing a hybrid scheduling algorithm for many task computing that addresses big data environments with few penalties, taking into consideration the deadlines and satisfying a data dependent task model. The hybrid solution consists of several heuristics and algorithms (min-min, min-max and earliest deadline first) combined in order to provide a scheduling algorithm that matches our problem. The experimental results are conducted by simulation and prove that the proposed hybrid algorithm behaves very well in terms of meeting deadlines.
QoS, qos, QA75.5-76.95, simulation, big-data systems, many-task computing, scheduling heuristics, Electronic computers. Computer science, big data systems, QA1-939, many task computing, Mathematics, Performance evaluation, queueing, and scheduling in the context of computer systems
QoS, qos, QA75.5-76.95, simulation, big-data systems, many-task computing, scheduling heuristics, Electronic computers. Computer science, big data systems, QA1-939, many task computing, Mathematics, Performance evaluation, queueing, and scheduling in the context of computer systems
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
