Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Вестник Научно-иссле...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Influence of equipment rigidity on the natural bending frequency of the EMU train car body

Authors: R. V. Guchinsky;

Influence of equipment rigidity on the natural bending frequency of the EMU train car body

Abstract

The first frequency of the own bending vibrations of the car body of the EMU train is one of the main normalized parameters associated with smooth running. Estimation of this parameter at the design stage allows to accelerate the process of development of design documentation and to reduce further number of tests. Rigidity of the undercarriage and roof equipment of the EMU train cars contributes to the overall rigidity of the body. When simulating the equipment with concentrated masses at the attachment points, underestimating the rigidity of the body results in underestimated values of the first natural frequency of bending vibrations of the body. It is shown that modeling the equipment with a rigid area with subordinate nodes at the attachment points makes it possible to simplify the process of constructing the model and adequately take into account the rigidity of the equipment not only in determining the static characteristics of body deflections, but also in calculating the dynamic characteristic and the first natural frequency. Using subordinate nodes of a rigid area on the surfaces of the fixing holes leads to a reassessment of the natural frequency. Value of the first natural frequency of the body oscillations is linearly dependent on the specific weight of the undercarriage equipment. When designing the bodies of EMU train cars (especially motor cars), in order to increase the frequency value, the equipment boxes should be located, taking into account the compatibility of the deformations of the box frames and the loadbearing structure of the body. Massive boxes for small equipment should be placed as close to the bolster beams as possible. If it is necessary to place largesize boxes under the car equipment, one should consider variants of its location in the central part of the body to include the box frames in the bend of the transverse beams of the frame.

Related Organizations
Keywords

Railroad engineering and operation, жесткость оборудования, электропоезд, модальный анализ, кузов, метод конечных элементов, частота собственных колебаний, TF1-1620, динамика вагона

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold