Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Future Generation Co...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Future Generation Computer Systems
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

New and improved search algorithms and precise analysis of their average-case complexity

Authors: Şahin Emrah Amrahov; Adnan Saher Mohammed; Fatih V. Çelebi;

New and improved search algorithms and precise analysis of their average-case complexity

Abstract

Abstract In this paper, we consider the searching problem over ordered sequences. It is well known that Binary Search (BS) algorithm solves this problem with very efficient complexity, namely with the complexity θ ( log 2 n ) . The developments of the BS algorithm, such as Ternary Search (TS) algorithm do not improve the efficiency. The rapid increase in the amount of data has made the search problem more important than in the past. And this made it important to reduce average number of comparisons in cases where the asymptotic improvement is not achieved. In this paper, we identify and analyze an implementation issue of BS. Depending on the location of the conditional operators, we classify two different implementations for BS which are widely used in the literature. We call these two implementations weak and correct implementations. We calculate precise number of comparisons in average case for both implementations. Moreover, we transform the TS algorithm into an improved ternary search (ITS) algorithm. We also propose a new Binary–Quaternary Search (BQS) algorithm by using a novel dividing strategy. We prove that an average number of comparisons for both presented algorithms ITS and BQS is less than for the case of correct implementation of the BS algorithm. We also provide the experimental results.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!