Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ACS Applied Material...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ACS Applied Materials & Interfaces
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.18452/33...
Article . 2025
License: CC BY
Data sources: Datacite
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

High-Precision Surface Tension Measurements of Sodium, Potassium, and Their Alloys via Du Noüy Ring Tensiometry

Authors: Naiyu Qi; Rachana Somaskandan; Gustav Graeber;

High-Precision Surface Tension Measurements of Sodium, Potassium, and Their Alloys via Du Noüy Ring Tensiometry

Abstract

The development of post-lithium-ion batteries has sparked significant interest in alkali-metal anodes, particularly sodium (Na), potassium (K), and sodium–potassium (Na–K) alloys. Na–K alloys are promising for partially liquid anodes due to their unique low melting points. A critical factor influencing Na–K-based anode performance is wetting behavior, which governs electrical conductivity, mechanical contact, and long-term stability. At the heart of wetting lies surface tension, a fundamental property of solid–liquid–gas interactions. However, the surface tension of alkali metals and their alloys, particularly Na–K systems, remains poorly understood due to experimental and theoretical challenges. This study bridged these gaps by employing Du Noüy ring tensiometry for the first time in alkali-metal systems to measure the surface tension of Na, K, and Na–K alloys across temperatures from ambient to 180 °C. A key innovation in this work is the development of the push-in Du Noüy method, which provided significantly higher precision and reliability compared to the traditional pull-out technique, without requiring a correction factor. The measured surface tension decreased with increasing temperature for the studied Na–K alloys. For instance, for a eutectic Na–K mixture, the surface tension decreases from 121.7 mN m –1 to 112.2 mN m –1 when increasing the temperature from ambient to 180 °C. Additionally, this study presented the first use of Gibbs free energy minimization to model the surface tension of the Na–K system. The robust method significantly enhanced the predictive accuracy compared to the previous simplified model, reducing deviations from 25% to 2%. Our findings reveal that surface tension increases with sodium mole fraction in the bulk phase, yet the surface monolayer remains potassium-rich, indicating non-ideal surface behavior. This study deepens the understanding of alkali-metal wetting behavior, providing valuable insights for designing optimized interfaces in next-generation semi-solid alkali-metal batteries.

Keywords

600 Technik und Technologie, ddc:600, 540 Chemie und zugeordnete Wissenschaften, batteries, ddc:540, surface tension, sodium−potassium alloy, liquid-metal anodes, tensiometry, alkali metal

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
hybrid