Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2024
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Tamagawa number conjecture for CM modular forms and Rankin--Selberg convolutions

Authors: Castella, Francesc;

Tamagawa number conjecture for CM modular forms and Rankin--Selberg convolutions

Abstract

Let $E/F$ be an elliptic curve defined over a number field $F$ with complex multiplication by the ring of integers of an imaginary quadratic field $K$ such that the torsion points of $E$ generate over $F$ an abelian extension of $K$. In this paper we prove the $p$-part of the Birch--Swinnerton-Dyer formula for $E/F$ in analytic rank $1$ for primes $p>3$ split in $K$. This was previously known for $F=\mathbb{Q}$ by work of Rubin as a consequence of his proof of Mazur's Main Conjecture for rational CM elliptic curves, but the problem for $[F:\mathbb{Q}]>1$ remained wide open. The approach introduced in this paper also yields a proof of similar results for CM abelian varieties $A/K$ and for CM modular forms, as well as an analogue in this setting of Skinner's $p$-converse to the theorem of Gross--Zagier and Kolyvagin.

Moved application to higher weight CM p-converse to a new appendix (joint with Mychelle Parker). Final version to appear in Proc. Lond. Math. Soc

Keywords

Number Theory, FOS: Mathematics, Number Theory (math.NT)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green