
Rotary friction welding of wood typically uses dowels made from the same material as the base wood or involves specific modifications to the dowels, but these methods have practical limitations and are complex. This study focused on commonly used dowel materials (softwood: Scots pine, hardwood: birch), with moisture content adjusted to 7 to 10%, and examined the welding performance and micro-mechanisms. Through orthogonal experiments, the influence of process parameters on the welding strength of both wood types was systematically investigated. The microstructures of the welded areas were analyzed using a depth-of-field microscope and scanning electron microscope (SEM) to explore the friction mechanisms. The results indicated that both Scots pine and birch dowels can be effectively welded using rotary friction. The optimal parameters were identified as follows: Scots pine dowels—hole diameter ratio of 8/12, rotational speed of 3000 r/min, feed rate of 25 mm/s; birch dowels—hole diameter ratio of 8/12, rotational speed of 2500 r/min, feed rate of 20 mm/s. Depth-of-field microscopy revealed larger weld areas and well-preserved surface structures. SEM images showed that during welding, the materials between the dowels and base wood melted, flowed, and re-solidified into a tightly bonded structure, ensuring a durable connection.
process parameters, orthogonal experiment, melting and flow, welding mechanisms, wood rotary friction welding, TP248.13-248.65, Biotechnology
process parameters, orthogonal experiment, melting and flow, welding mechanisms, wood rotary friction welding, TP248.13-248.65, Biotechnology
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
