
Deep learning models are known to suffer from the problem of catastrophic forgetting when they incrementally learn new classes. Continual learning for semantic segmentation (CSS) is an emerging field in computer vision. We identify a problem in CSS: A model tends to be confused between old and new classes that are visually similar,\ud which makes it forget the old ones. To address this gap, we propose REMINDER - a new CSS framework and a novel class similarity knowledge distillation (CSW-KD) method. Our CSW-KD method distills the knowledge of a previous model on old classes that are similar to the new one. This provides two main benefits: (i) selectively revising old\ud classes that are more likely to be forgotten, and (ii) better learning new classes by relating them with the previously seen classes. Extensive experiments on Pascal-VOC 2012 and ADE20k datasets show that our approach outperforms state-of-the-art methods on standard CSS settings by up to 7.07% and 8.49%, respectively.
Efficient learning and inferences, Vision applications and systems, grouping and shape analysis, Segmentation, Deep learning architectures and techniques, Computer vision theory, Scene analysis and understanding, Representation learning
Efficient learning and inferences, Vision applications and systems, grouping and shape analysis, Segmentation, Deep learning architectures and techniques, Computer vision theory, Scene analysis and understanding, Representation learning
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 29 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
