Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ CORE (RIOXX-UK Aggre...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/cvpr52...
Article . 2022 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Class Similarity Weighted Knowledge Distillation for Continual Semantic Segmentation

Authors: Phan, Minh Hieu; Ta, The Anh; Phung, Son Lam; Tran-Thanh, Long; Bouzerdoum, Abdesselam;

Class Similarity Weighted Knowledge Distillation for Continual Semantic Segmentation

Abstract

Deep learning models are known to suffer from the problem of catastrophic forgetting when they incrementally learn new classes. Continual learning for semantic segmentation (CSS) is an emerging field in computer vision. We identify a problem in CSS: A model tends to be confused between old and new classes that are visually similar,\ud which makes it forget the old ones. To address this gap, we propose REMINDER - a new CSS framework and a novel class similarity knowledge distillation (CSW-KD) method. Our CSW-KD method distills the knowledge of a previous model on old classes that are similar to the new one. This provides two main benefits: (i) selectively revising old\ud classes that are more likely to be forgotten, and (ii) better learning new classes by relating them with the previously seen classes. Extensive experiments on Pascal-VOC 2012 and ADE20k datasets show that our approach outperforms state-of-the-art methods on standard CSS settings by up to 7.07% and 8.49%, respectively.

Related Organizations
Keywords

Efficient learning and inferences, Vision applications and systems, grouping and shape analysis, Segmentation, Deep learning architectures and techniques, Computer vision theory, Scene analysis and understanding, Representation learning

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    29
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
29
Top 10%
Top 10%
Top 10%
Green