Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Bulletin of Kharkov ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Analysing modeling methods in the ecology from the systemology positions

Authors: Kovalova, O.;

Analysing modeling methods in the ecology from the systemology positions

Abstract

To obtain a forecast, models of behavior of specific systems are created, whose adequacy can be judged only within the framework of accepted hypotheses. The increase in the complexity of the object under study causes an increase in the complexity of the mathematical apparatus. However, today’s modeling device does not solve the main problem of increasing the low (or unsatisfactory) predictive ability of models of rather complicated systems. Ecosystems are the objects of complex nature, and the methodological basis for their study is the theory of complex systems. Therefore, when solving this issue, it is necessary to turn to the analysis of the basic principles of systemology. Goal: analysis of the main provisions of systemology for the application of modeling in ecosystem research. The methodological basis for the study of the ecosystem is the theory of complex systems. As a result of the work the analysis of the basic positions of systemology concerning the approaches in the study of simple and complex systems was carried out. The basic principles of systemology and the most important functions of explanation and prediction of the observed phenomena in the studied class of systems are considered, as well as the connection between the complications of the behavior of simulated objects and the methods of their modeling. It is determined that in the study of complex systems, the principle of multiplicity of models is used. In this case, none of the methods of modeling has all sets of model functions at the same time. The principle of feasibility of models is manifested in the block method of constructing simulation models. This to overcome allows to some extent the "pro-oath of dimension" in models of potential efficiency, where impossible situations can be rejected for real systems. The principle of incompatibility manifests itself in the fact that none of the methods of modeling realizes simultaneously the explanatory and predictive functions of the theory. Finally, the principle of counter-intuitive behavior of complex systems is taken into account when constructing self-organizing models. It is noted that mathematical modeling of complex systems should be considered as an extension of traditional natural science experiment. With regard to the analysis of environmental systems, as well as the analysis of any other complex system, the experiment should replace the power of abstraction and computer simulation.

Для получения прогноза создаются модели поведения конкретных систем, об адекватности которых можно судить лишь в рамках принятых гипотез. Рост сложности исследуемого объекта приводит к росту сложности математического аппарата. Однако используемый сегодня аппарат моделирования не решает главную проблему увеличения невысокой (или неудовлетворительной) предсказательной способности моделей достаточно сложных систем. Экосистемы – это объекты сложной природы, и методологической основой их изучения служит теория сложных систем. Поэтому при решении этого вопроса необходимо обратиться к анализу основных принципов системологии.

Здійснено аналіз основних положень системології щодо підходів у дослідженні простих і складних систем. Розглянуті основні принципи системології та найбільш важливі функції пояснення та передбачення спостережуваних феноменів в досліджуваному класі систем, а також зв’язок між ускладненням поведінки об’єктів, що моделюються, і методами їх моделювання.

Keywords

ecosystems; simple and complex systems; physicalism and systemology; complexity of the system; act decision; principles of systemology; methods of mathematical modeling, УДК 519.8, UDC 519.8, екосистеми; прості і складні системи; фізикалізм і системологія; складність системи; акт рішення; принципи системології; методи математичного моделювання, экосистемы; простые и сложные системы; физикализм и системология; сложность системы; акт решения; принципы системологии; методы математического моделирования

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
bronze