Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Real-Time...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Real-Time Image Processing
Article . 2015 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
DBLP
Article
Data sources: DBLP
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Fast encoding algorithm for high-efficiency video coding (HEVC) system based on spatio-temporal correlation

Authors: Jong-Hyeok Lee; Kalyan Goswami; Byung-Gyu Kim; Seyoon Jeong; Jin Soo Choi;

Fast encoding algorithm for high-efficiency video coding (HEVC) system based on spatio-temporal correlation

Abstract

Video compression technology is an importa nt research part to the intelligent user interface for interactive multimedia system using technologies and services such as image processing, pattern recognition, computer vision and cloud computing service. Recently, high-efficiency video coding (HEVC) has been established as the demand of very high-quality multimedia service like ultrahigh definition video service. High-efficiency video coding (HEVC) standard has three units such as coding unit (CU), prediction unit (PU) and transform unit. It has too many complexities to improve coding performance. We propose a fast algorithm which can be possible to apply for both CU and PU parts. To reduce the computational complexity, we propose CU splitting algorithm based on rate---distortion cost of CU about the parent and current levels to terminate the CU decision early. In terms of PU, we develop fast PU decision based on spatio-temporal and depth correlation for PU level. Finally, experimental results show that our algorithm provides a significant time reduction for encoding with a small loss in video quality, compared to the original HEVC Test Model (HM) version 10.0 software and the previous algorithm.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    17
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
17
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!