
arXiv: 2411.18919
Managing evolving graph data presents substantial challenges in storage and privacy, and training graph neural networks (GNNs) on such data often leads to catastrophic forgetting, impairing performance on earlier tasks. Despite existing continual graph learning (CGL) methods mitigating this to some extent, they rely on centralized architectures and ignore the potential of distributed graph databases to leverage collective intelligence. To this end, we propose Federated Continual Graph Learning (FCGL) to adapt GNNs across multiple evolving graphs under storage and privacy constraints. Our empirical study highlights two core challenges: local graph forgetting (LGF), where clients lose prior knowledge when adapting to new tasks, and global expertise conflict (GEC), where the global GNN exhibits sub-optimal performance in both adapting to new tasks and retaining old ones, arising from inconsistent client expertise during server-side parameter aggregation. To address these, we introduce POWER, a framework that preserves experience nodes with maximum local-global coverage locally to mitigate LGF, and leverages pseudo-prototype reconstruction with trajectory-aware knowledge transfer to resolve GEC. Experiments on various graph datasets demonstrate POWER's superiority over federated adaptations of CGL baselines and vision-centric federated continual learning approaches.
Accepted by SIGKDD 2025
Social and Information Networks (cs.SI), FOS: Computer and information sciences, Computer Science - Machine Learning, Artificial Intelligence (cs.AI), Computer Science - Databases, Computer Science - Artificial Intelligence, Computer Science - Social and Information Networks, Databases (cs.DB), Machine Learning (cs.LG)
Social and Information Networks (cs.SI), FOS: Computer and information sciences, Computer Science - Machine Learning, Artificial Intelligence (cs.AI), Computer Science - Databases, Computer Science - Artificial Intelligence, Computer Science - Social and Information Networks, Databases (cs.DB), Machine Learning (cs.LG)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
