Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Automatic Control
Article . 2026 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2024
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
DBLP
Article
Data sources: DBLP
versions View all 4 versions
addClaim

Regularized Q-Learning With Linear Function Approximation

Authors: Jiachen Xi; Alfredo Garcia; Petar Momčilović;

Regularized Q-Learning With Linear Function Approximation

Abstract

Regularized Markov Decision Processes serve as models of sequential decision making under uncertainty wherein the decision maker has limited information processing capacity and/or aversion to model ambiguity. With functional approximation, the convergence properties of learning algorithms for regularized MDPs (e.g. soft Q-learning) are not well understood because the composition of the regularized Bellman operator and a projection onto the span of basis vectors is not a contraction with respect to any norm. In this paper, we consider a bi-level optimization formulation of regularized Q-learning with linear functional approximation. The {\em lower} level optimization problem aims to identify a value function approximation that satisfies Bellman's recursive optimality condition and the {\em upper} level aims to find the projection onto the span of basis vectors. This formulation motivates a single-loop algorithm with finite time convergence guarantees. The algorithm operates on two time-scales: updates to the projection of state-action values are `slow' in that they are implemented with a step size that is smaller than the one used for `faster' updates of approximate solutions to Bellman's recursive optimality equation. We show that, under certain assumptions, the proposed algorithm converges to a stationary point in the presence of Markovian noise. In addition, we provide a performance guarantee for the policies derived from the proposed algorithm.

Related Organizations
Keywords

FOS: Computer and information sciences, Artificial Intelligence (cs.AI), Computer Science - Artificial Intelligence

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green