
The aim of this study is to substantiate the use machine learning methods to optimize a combination of ultrasonic welding (USW) parameters for manufacturing of multilayer lap joints consisting of two outer PEEK layers, a middle prepreg of unidirectional carbon fibers (CFs), and two energy directors (EDs) between them. As a result, a mathematical problem associated with determining the optimal combination of technological parameters was formulated for the formation of USW joints possessing improved functional properties. In addition, a methodology was proposed to analyze the mechanical properties of USW joints based on neural network simulation (NNS). Experiments were performed, and threshold values of the optimality conditions for the USW parameters were chosen. Accordingly, NNS was carried out to determine the parameter ranges, showing that the developed optimality condition was insufficient and required correction, taking into account other significant structural characteristics of the formed USW joints. The NNS study enabled specification of an extra area of USW parameters that were not previously considered optimal when designing the experiment. The NNS-predicted USW mode (P = 1.5 atm, t = 800 ms, and τ = 1500 ms) ensured formation of a lap joint with the required mechanical and structural properties (σUTS = 80.5 MPa, ε = 4.2 mm, A = 273 N·m, and Δh = 0.30 mm).
адгезия, нейросетевое моделирование, соединение внахлестку, machine learning; neural network simulation; ultrasonic welding; lap joint; PEEK; prepreg; interface; adhesion; Taguchi method, ультразвуковая сварка, интерфейс, машинное обучение, Тагучи метод, Article
адгезия, нейросетевое моделирование, соединение внахлестку, machine learning; neural network simulation; ultrasonic welding; lap joint; PEEK; prepreg; interface; adhesion; Taguchi method, ультразвуковая сварка, интерфейс, машинное обучение, Тагучи метод, Article
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
