Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.1...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1038/s41598...
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2023
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doaj.org/article/1e9c5...
Article . 2023
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.60692/dn...
Other literature type . 2023
Data sources: Datacite
https://dx.doi.org/10.60692/tb...
Other literature type . 2023
Data sources: Datacite
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Red-tailed hawk algorithm for numerical optimization and real-world problems

خوارزمية الصقر الأحمر الذيل للتحسين العددي ومشاكل العالم الحقيقي
Authors: Seydali Ferahtia; Azeddine Houari; Hegazy Rezk; Ali Djerioui; Mohamed Machmoum; Saad Motahhir; Mourad Aït‐Ahmed;

Red-tailed hawk algorithm for numerical optimization and real-world problems

Abstract

AbstractThis study suggests a new nature-inspired metaheuristic optimization algorithm called the red-tailed hawk algorithm (RTH). As a predator, the red-tailed hawk has a hunting strategy from detecting the prey until the swoop stage. There are three stages during the hunting process. In the high soaring stage, the red-tailed hawk explores the search space and determines the area with the prey location. In the low soaring stage, the red-tailed moves inside the selected area around the prey to choose the best position for the hunt. Then, the red-tailed swings and hits its target in the stooping and swooping stages. The proposed algorithm mimics the prey-hunting method of the red-tailed hawk for solving real-world optimization problems. The performance of the proposed RTH algorithm has been evaluated on three classes of problems. The first class includes three specific kinds of optimization problems: 22 standard benchmark functions, including unimodal, multimodal, and fixed-dimensional multimodal functions, IEEE Congress on Evolutionary Computation 2020 (CEC2020), and IEEE CEC2022. The proposed algorithm is compared with eight recent algorithms to confirm its contribution to solving these problems. The considered algorithms are Farmland Fertility Optimizer (FO), African Vultures Optimization Algorithm (AVOA), Mountain Gazelle Optimizer (MGO), Gorilla Troops Optimizer (GTO), COOT algorithm, Hunger Games Search (HGS), Aquila Optimizer (AO), and Harris Hawks optimization (HHO). The results are compared regarding the accuracy, robustness, and convergence speed. The second class includes seven real-world engineering problems that will be considered to investigate the RTH performance compared to other published results profoundly. Finally, the proton exchange membrane fuel cell (PEMFC) extraction parameters will be performed to evaluate the algorithm with a complex problem. The proposed algorithm will be compared with several published papers to approve its performance. The ultimate results for each class confirm the ability of the proposed RTH algorithm to provide higher performance for most cases. For the first class, the RTH mostly got the optimal solutions for most functions with faster convergence speed. The RTH provided better performance for the second and third classes when resolving the real word engineering problems or extracting the PEMFC parameters.

Country
France
Keywords

Cartography, Economics, Science, Robustness (evolution), Metaheuristic, Biochemistry, Gene, Article, Artificial Intelligence, Evolutionary algorithm, [INFO.INFO-RO]Computer Science [cs]/Operations Research [math.OC], FOS: Mathematics, Swarm Intelligence Optimization Algorithms, Constraint Handling, Biology, Economic growth, Geography, Multi-Objective Optimization, Q, Mathematical optimization, R, Computer science, Ant Colony Optimization, 004, Algorithm, Optimization algorithm, Computational Theory and Mathematics, Application of Genetic Programming in Machine Learning, Computer Science, Physical Sciences, Nature-Inspired Algorithms, Convergence (economics), Medicine, [MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC], Benchmark (surveying), Multiobjective Optimization in Evolutionary Algorithms, Mathematics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    78
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
78
Top 1%
Top 10%
Top 1%
Green
hybrid
Related to Research communities