Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ British Journal of S...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
British Journal of Sports Medicine
Article . 2019 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Randomised controlled trials (RCTs) in sports injury research: authors—please report the compliance with the intervention

Authors: Rasmus Oestergaard Nielsen; Michael Lejbach Bertelsen; Daniel Ramskov; Camma Damsted; Evert Verhagen; Steef W Bredeweg; Daniel Theisen; +1 Authors

Randomised controlled trials (RCTs) in sports injury research: authors—please report the compliance with the intervention

Abstract

BackgroundIn randomised controlled trials (RCTs) of interventions that aim to prevent sports injuries, the intention-to-treat principle is a recommended analysis method and one emphasised in the Consolidated Standards of Reporting Trials (CONSORT) statement that guides quality reporting of such trials. However, an important element of injury prevention trials—compliance with the intervention—is not always well-reported. The purpose of the present educational review was to describe the compliance during follow-up in eight large-scale sports injury trials and address compliance issues that surfaced. Then, we discuss how readers and researchers might consider interpreting results from intention-to-treat analyses depending on the observed compliance with the intervention.MethodsData from seven different randomised trials and one experimental study were included in the present educational review. In the trials that used training programme as an intervention, we defined full compliance as having completed the programme within ±10% of the prescribed running distance (ProjectRun21 (PR21), RUNCLEVER, Start 2 Run) or time-spent-running in minutes (Groningen Novice Running (GRONORUN)) for each planned training session. In the trials using running shoes as the intervention, full compliance was defined as wearing the prescribed running shoe in all running sessions the participants completed during follow-up.ResultsIn the trials that used a running programme intervention, the number of participants who had been fully compliant was 0 of 839 (0%) at 24-week follow-up in RUNCLEVER, 0 of 612 (0%) at 14-week follow-up in PR21, 12 of 56 (21%) at 4-week follow-up in Start 2 Run and 8 of 532 (1%) at 8-week follow-up in GRONORUN. In the trials using a shoe-related intervention, the numbers of participants who had been fully compliant at the end of follow-up were 207 of 304 (68%) in the 21 week trial, and 322 of 423 (76%), 521 of 577 (90%), 753 of 874 (86%) after 24-week follow-up in the other three trials, respectively.ConclusionThe proportion of runners compliant at the end of follow-up ranged from 0% to 21% in the trials using running programme as intervention and from 68% to 90% in the trials using running shoes as intervention. We encourage sports injury researchers to carefully assess and report the compliance with intervention in their articles, use appropriate analytical approaches and take compliance into account when drawing study conclusions. In studies with low compliance, G-estimation may be a useful analytical tool provided certain assumptions are met.

Keywords

Injury, Running, STANDARD, DESIGN, PROGRAM, Athletic Injuries/prevention & control, Humans, Randomized Controlled Trials as Topic, Randomised controlled trial, RISK, Randomized Controlled Trials as Topic/standards, Methodology, EFFICACY, PREVENTION, Physical Conditioning, Human/methods, Intention to Treat Analysis, Shoes, Running/injuries, DEFINITION, Data Interpretation, Statistical, RUNNERS, Athletic Injuries, RUNNING-RELATED INJURY, Patient Compliance, SHOES, Physical Conditioning, Human

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Top 10%
Top 10%
Top 10%
bronze