
The fuzzy curve-tracing (FCT) algorithm can be used to extract a smooth curve from unordered noisy data. However, the model produces good results only if the curve shape is either opened or closed. In this paper, we propose several techniques to generalize the FCT algorithm for tracing complicated curves. We develop a modified clustering algorithm that can produce cluster centers less dependent on the pre-specified number of clusters, which makes the reordering of cluster centers easier. We make use of the Eikonal equation and the Prim's algorithm to form the initial curve, which may contain sharp corners and intersections. We also introduce a more powerful curve smoothing method. Our generalized FCT algorithm is able to trace a wide range of complicated curves, such as handwritten Chinese characters.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
