Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Jurnal Sisfokom (Sis...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Jurnal Sisfokom (Sistem Informasi dan Komputer)
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Comparative Analysis: Machine Learning Algorithms for TOC Prediction in Pharmaceutical Water Treatment Systems

Authors: Dieki Rian Mustapa; Aris Tjahyanto;

Comparative Analysis: Machine Learning Algorithms for TOC Prediction in Pharmaceutical Water Treatment Systems

Abstract

Water quality is crucial in pharmaceutical production, where it serves as a solvent and raw material. Contamination with organic compounds poses a risk to product integrity and safety. TOC serves as a key indicator for assessing organic pollution levels in water. An increase in TOC signals potential issues with water treatment systems. Machine learning prediction of TOC values is essential for preemptive monitoring and maintenance. This study aimed to compare three different machine learning algorithms - Linear Regression (RL), Random Forest (RF), and multilayer perceptron (MLP) - for predicting Total Organic Carbon (TOC) in pharmaceutical water treatment systems. By utilizing a dataset covering various operational conditions of pharmaceutical water treatment systems, the research conducted a comprehensive analysis. Each algorithm underwent evaluation using performance metrics like coefficient of determination (R-squared), and prediction accuracy to assess their effectiveness in predicting TOC concentrations. A correlation coefficient approaching 1 (100%) signifies a strong relationship between model predictions and actual target values (accuracy prediction), while a smaller Mean Absolute Error (MAE) indicates higher accuracy in predicting target values. The study found that the results of the correlation coefficient in order from highest to lowest are the RF, MLP, and RL models with values of 95.04%, 93.11%, and 80.27%, respectively. Likewise, additional metrics for evaluation, including Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Relative Absolute Error (RAE) and Root Relative Squared Error (RRSE), exhibit a ranking from lowest to highest values across RF, MLP, and RL models. RF has a higher prediction accuracy of the TOC than other models (95%) and lowest MAE (3.9). This research offers valuable insights into utilizing machine learning algorithms for TOC prediction within pharmaceutical water treatment to make informed decisions, improving water treatment systems and overall product quality.

Keywords

machine learning, algorithm comparison, water quality assessment, Information technology, total organic carbon, T58.5-58.64, pharmaceutical water treatment systems

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold