Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ http://graal.ens-lyo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
INRIA2
External research report . 2010
Data sources: INRIA2
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL-ENS-LYON
External research report . 2010
Data sources: HAL-ENS-LYON
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
INRIA2
Conference object . 2010
Data sources: INRIA2
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL-ENS-LYON
Conference object . 2010
Data sources: HAL-ENS-LYON
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 7 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Computing the throughput of probabilistic and replicated streaming applications

Authors: Benoit, Anne; Dufossé, Fanny; Gallet, Matthieu; Gaujal, Bruno; Robert, Yves;

Computing the throughput of probabilistic and replicated streaming applications

Abstract

In this paper, we investigate how to compute the throughput of probabilistic and replicated streaming applications. We are given (i) a streaming application whose dependence graph is a linear chain; (ii) a one-to-many mapping of the application onto a fully heterogeneous target, where a processor is assigned at most one application stage, but where a stage can be replicated onto a set of processors; and (iii) a set of IID (Independent and Identically-Distributed) variables to model each computation and communication time in the mapping. How can we compute the throughput of the application, i.e., the rate at which data sets can be processed? We consider two execution models, the STRICT model where the actions of each processor are sequentialized, and the OVERLAP model where a processor can compute and communicate in parallel. The problem is easy when application stages are not replicated, i.e., assigned to a single processor: in that case the throughput is dictated by the critical hardware resource. However, when stages are replicated, i.e., assigned to several processors, the problem becomes surprisingly complicated: even in the deterministic case, the optimal throughput may be lower than the smallest internal resource throughput. To the best of our knowledge, the problem has never been considered in the probabilistic case. The first main contribution of the paper is to provide a general method (although of exponential cost) to compute the throughput when mapping parameters follow IID exponential laws. This general method is based upon the analysis of timed Petri nets deduced from the application mapping; it turns out that these Petri nets exhibit a regular structure in the OVERLAP model, thereby enabling to reduce the cost and provide a polynomial algorithm. The second main contribution of the paper is to provide bounds for the throughput when stage parameters are arbitrary IID and NBUE (New Better than Used in Expectation) variables: the throughput is bounded from below by the exponential case and bounded from above by the deterministic case.

Keywords

[INFO.INFO-DC]Computer Science [cs]/Distributed, replication, Scheduling, availability, probabilistic streaming applications, Parallel, 004, and Cluster Computing [cs.DC], [INFO.INFO-DC] Computer Science [cs]/Distributed, Parallel, and Cluster Computing [cs.DC], ACM: C.: Computer Systems Organization/C.4: PERFORMANCE OF SYSTEMS/C.4.5: Reliability, and serviceability, throughput, timed Petri nets

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green