Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Journal of Clini...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Journal of Clinical Pharmacology
Article . 2016 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Response Surface Analysis and Nonlinear Optimization Algorithm for Maximization of Clinical Drug Performance: Application to Extended‐Release and Long‐Acting Injectable Paliperidone

Authors: Roberto, Gomeni; Françoise, Bressolle-Gomeni; Maurizio, Fava;

Response Surface Analysis and Nonlinear Optimization Algorithm for Maximization of Clinical Drug Performance: Application to Extended‐Release and Long‐Acting Injectable Paliperidone

Abstract

AbstractModel‐based approach is recognized as a tool to make drug development more productive and to better support regulatory and therapeutic decisions. The objective of this study was to develop a novel model‐based methodology based on the response surface analysis and a nonlinear optimizer algorithm to maximize the clinical performances of drug treatments. The treatment response was described using a drug‐disease model accounting for multiple components such as the dosage regimen, the pharmacokinetic characteristics of a drug (including the mechanism and the rate of drug delivery), and the exposure‐response relationship. Then, the clinical benefit of a treatment was defined as a function of the diseases and the clinical endpoints and was estimated as a function of the target pharmacodynamic endpoints used to evaluate the treatment effect. A case study is presented to illustrate how the treatment performances of paliperidone extended release (ER) and paliperidone long‐acting injectable (LAI) can be improved. A convolution‐based approach was used to characterize the pharmacokinetics of ER and LAI paliperidone. The drug delivery properties and the dosage regimen maximizing the clinical benefit (defined as the target level of D2 receptor occupancy) were estimated using a nonlinear optimizer. The results of the analysis indicated that a substantial improvement in clinical benefit (from 15% to 27% for the optimization of the in vivo release and from ∼30% to ∼70% for the optimization of dosage regimen) was obtained when optimal strategies were deployed either for optimizing the in vivo drug delivery properties of ER formulations or for optimizing the dosage regimen of LAI formulations.

Related Organizations
Keywords

Cross-Over Studies, Models, Statistical, Dose-Response Relationship, Drug, Endpoint Determination, Delayed-Action Preparations, Paliperidone Palmitate, Humans, Algorithms, Antipsychotic Agents, Injections

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Top 10%
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!