
arXiv: 2102.01495
Efficient resource allocation with hybrid precoder design is essential for massive MIMO systems operating in millimeter wave (mmW) domain. Owing to a higher energy efficiency and a lower complexity of a partially connected hybrid architecture, in this letter, we propose a joint deep convolutional neural network (CNN) based scheme for precoder design and antenna selection of a partially connected massive MIMO hybrid system. Precoder design and antenna selection is formulated as a regression and classification problem, respectively, for CNN. The channel data is fed to the first CNN network which outputs a subset of selected antennas having the optimal spectral efficiency. This subset is again fed to the second CNN to obtain the block diagonal precoder for a partially connected architecture. Simulation results verifies the superiority of CNN based approach over conventional iterative and alternating minimization (alt-min) algorithms. Moreover, the proposed scheme is computationally efficient and is not very sensitive to channel irregularities.
Signal Processing (eess.SP), FOS: Computer and information sciences, Computer Science - Information Theory, Information Theory (cs.IT), FOS: Electrical engineering, electronic engineering, information engineering, Electrical Engineering and Systems Science - Signal Processing
Signal Processing (eess.SP), FOS: Computer and information sciences, Computer Science - Information Theory, Information Theory (cs.IT), FOS: Electrical engineering, electronic engineering, information engineering, Electrical Engineering and Systems Science - Signal Processing
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
