
This paper proposes a self-adaptive mobile web service (MWS) discovery approach based on the modified negative selection algorithm (M-NSA) to improve the effectiveness and accuracy of MWS discovery in dynamic mobile environment. The main contributions of this work are the service relevance learning model and a MWS matchmaking algorithm that it is capable of changing as soon as the discovery demonstrates the feasibility of attaining improved effectiveness or accuracy. This is achieved by transforming the two stages of modified negative selection algorithm (M-NSA) into service relevance and self-adaptive matchmaking, respectively. The proposed approach is evaluated in terms of both binary and graded relevance. After an experiment with the largest MWS dataset, the proposed approach records better results in comparison with the state-of-the-art approaches. This is owing to the self/nonself discrimination mechanism, in addition to the decent parameter analysis, and the use of more comprehensive information that covers the entire discovery space.
629, QA75 Electronic computers. Computer science
629, QA75 Electronic computers. Computer science
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
