
This manuscript introduces a novel class of time series independence tests based on Phi-divergence and quantile-based symbolization. We derive the asymptotic distribution of the test statistic and propose a bootstrap version. Simulations identified optimal parameter values and compared the test performance to existing methods, demonstrating higher size-corrected power for specific Phi-divergence cases. Furthermore, we investigate Rukhin and power divergence, revealing Pearson’s divergence as optimal. The proposed tests were applied to financial (Tehran Stock Exchange, S\&P 500) and ecological (Lynx population) datasets, effectively detecting dependence on the data and confirming the adequacy of the model through independent residuals, demonstrating the robustness and versatility of the method in diverse domains.
Applied Statistics, Serial independence test;Phi-divergence;simulation studies;quantilesymbolization;time series, Uygulamalı İstatistik, Computational Statistics, Hesaplamalı İstatistik
Applied Statistics, Serial independence test;Phi-divergence;simulation studies;quantilesymbolization;time series, Uygulamalı İstatistik, Computational Statistics, Hesaplamalı İstatistik
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
