
The ratio of potential temperature (Tp) and dewpoint temperature (Td), which is derived from retrievals of infrared hyperspectral measurements, is adopted as a new parameter for better estimating planetary boundary layer height (PBLH). A case study, conducted with National Airborne Sounder Testbed-Interferometer (NAST-I) measurements obtained during the Fire Influence on Regional to Global Environments and Air Quality field campaign, is presented herein. We use NAST-I geophysical parameter retrievals from the Single Field-of-view Sounder Atmospheric Product algorithm, which ensures higher vertical resolution of temperature and moisture profiles as well as accurate surface temperature and emissivity, to estimate PBLH with a higher horizontal spatial resolution of 2.6 km. As a result of using the ratio of potential and dewpoint temperatures, instead of individual thermodynamic retrievals, a more robust parameter for estimating PBLH is obtained. A quality control process is developed to filter out abnormal outliers. Additionally, those outliers are modified using statistics from nominal distributions of the Tp/Td ratio and PBLH. A high consistency between NAST-I thermodynamically-retrieved PBLH and that from the European Centre for Medium-Range Weather Forecasts Reanalysis-5, which uses both dynamic and thermodynamic information, successfully supports the validity and significance of our approach.
Ocean engineering, infrared hyperspectral sounder, QC801-809, Geophysics. Cosmic physics, National Airborne Sounder Testbed-Interferometer (NAST-I), Planetary Boundary Layer Height (PBLH), Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ), TC1501-1800
Ocean engineering, infrared hyperspectral sounder, QC801-809, Geophysics. Cosmic physics, National Airborne Sounder Testbed-Interferometer (NAST-I), Planetary Boundary Layer Height (PBLH), Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ), TC1501-1800
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
