Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ UPCommons. Portal de...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Parallel and Distributed Systems
Article . 2021 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Multi-GPU Parallelization of the NAS Multi-Zone Parallel Benchmarks

Authors: González Tallada, Marc; Morancho Llena, Enrique;

Multi-GPU Parallelization of the NAS Multi-Zone Parallel Benchmarks

Abstract

GPU-based computing systems have become a widely accepted solution for the high-performance-computing (HPC) domain. GPUs have shown highly competitive performance-per-watt ratios and can exploit an astonishing level of parallelism. However, exploiting the peak performance of such devices is a challenge, mainly due to the combination of two essential aspects of multi-GPU execution. On one hand, the workload should be distributed evenly among the GPUs. On the other hand, communications between GPU devices are costly and should be minimized. Therefore, a trade-of between work-distribution schemes and communication overheads will condition the overall performance of parallel applications run on multi-GPU systems. In this article we present a multi-GPU implementation of NAS Multi-Zone Parallel Benchmarks (which execution alternate communication and computational phases). We propose several work-distribution strategies that try to evenly distribute the workload among the GPUs. Our evaluations show that performance is highly sensitive to this distribution strategy, as the the communication phases of the applications are heavily affected by the work-distribution schemes applied in computational phases. In particular, we consider Static, Dynamic, and Guided schedulers to find a trade-off between both phases to maximize the overall performance. In addition, we compare those schedulers with an optimal scheduler computed offline using IBM CPLEX. On an evaluation environment composed of 2 x IBM Power9 8335-GTH and 4 x GPU NVIDIA V100 (Volta), our multi-GPU parallelization outperforms single-GPU execution from 1.48x to 1.86x (2 GPUs) and from 1.75x to 3.54x (4 GPUs). This article analyses these improvements in terms of the relationship between the computational and communication phases of the applications as the number of GPUs is increased. We prove that Guided schedulers perform at similar level as optimal schedulers.

This work was supported by the Spanish Ministry of Science and Technology (TIN2015-65316-P) and by the Generalitat de Catalunya (2014-SGR-1051).

Peer Reviewed

Keywords

Dynamic, Parallel programming (Computer science), Programació en paral·lel (Informàtica), Unitats de processament gràfic, Guided schedulings, Multi-GPU parallelization, Àrees temàtiques de la UPC::Informàtica::Arquitectura de computadors::Arquitectures paral·leles, :Informàtica::Arquitectura de computadors::Arquitectures paral·leles [Àrees temàtiques de la UPC], Graphics processing units, Load balancing, Static

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 57
    download downloads 220
  • 57
    views
    220
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
1
Average
Average
Average
57
220
Green
bronze