Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Journa...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
International Journal of Molecular Sciences
Article . 2014 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2014
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Neuroprotective Effect of Melatonin against Kainic Acid-Induced Oxidative Injury in Hippocampal Slice Culture of Rats

Authors: Kim, Hyung A.; Lee, Kyung Hee; Lee, Bae Hwan;

Neuroprotective Effect of Melatonin against Kainic Acid-Induced Oxidative Injury in Hippocampal Slice Culture of Rats

Abstract

Endogenous melatonin is a known free radical scavenger that removes reactive oxygen species (ROS), thus, alleviating oxidative stress. The purpose of this study was to demonstrate its effect against kainic acid (KA)-induced oxidative stress in organotypic hippocampal slice cultures (OHSCs). To observe neuroprotective effects of melatonin, different concentrations (0.01, 0.1 and 1 mM) of melatonin were administrated after KA treatment for 18 h in OHSCs of rat pups. Dose-response studies showed that neuronal cell death was significantly reduced after 0.1 and 1 mΜ melatonin treatments based on propidium iodide (PI) uptake and cresyl violet staining. The dichlorofluorescein (DCF) fluorescence which indicates ROS formation decreased more in the melatonin-treated group than in the KA group. The expression of 5-lipoxigenase (5-LO) and caspase-3 were reduced in the melatonin-treated groups compared to the KA group. These results suggest that melatonin may be an effective agent against KA-induced oxidative stress in the OHSC model.

Keywords

antioxidant, Kainic Acid/toxicity*, Neurons/metabolism, Oxidative Stress/drug effects, 610, melatonin, Cell Death/drug effects*, Hippocampus, melatonin; kainic acid; organotypic hippocampal slice culture; reactive oxygen species; antioxidant; neuroprotection, Article, Antioxidants, Dose-Response Relationship, Rats, Sprague-Dawley, Neurons/cytology, Reactive Oxygen Species/metabolism, Animals, Neuroprotective Agents/pharmacology*, Melatonin, reactive oxygen species, Neurons, organotypic hippocampal slice culture, Arachidonate 5-Lipoxygenase, Kainic Acid, Cell Death, Dose-Response Relationship, Drug, Melatonin/pharmacology*, melatonin; kainic acid; organotypic hippocampal slice culture; reactiveoxygen species; antioxidant; neuroprotection, Caspase 3, Caspase 3/biosynthesis, Arachidonate 5-Lipoxygenase/biosynthesis, 620, Rats, Oxidative Stress, Neuroprotective Agents, Antioxidants/pharmacology, Hippocampus/cytology, Hippocampus/pathology*, neuroprotection, Sprague-Dawley, Drug, Reactive Oxygen Species, kainic acid

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Top 10%
Average
Top 10%
Green
gold