
This paper presents a novel integrated Geographic Information System-Multi-Criteria Decision Making (GIS-MCDM) framework for evaluating landfill site suitability in Shimla, India, a rapidly urbanizing hill station. Combining Remote Sensing-Geographic Information Systems (RS-GIS) with the Analytical Hierarchy Process (AHP) and VlseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR) methods, the framework developed a Landfill Suitability Zoning map and ranked potential sites. The Land Suitability Index (LSI), derived using AHP, categorized the 124 sq. km study area into five suitability classes, with key factors influencing rankings: Landslide Proximity (weight: 0.162), Ground Slope (0.138), Land Use and Cover (0.122), Ground Elevation (0.114), and Road Proximity (0.095). From the Very High suitability zones, eight candidate sites were identified and ranked using VIKOR, with Kiargiri (score: 0.083) identified as the most suitable, followed by Baboloo (0.530), Karog (0.535), and Phayal Road (0.663). Sensitivity Analysis (SA) was conducted across five scenarios to account for possible variations in expert judgment, with the first three increasing beneficial weights (10 %, 15 %, and 20 %) and the last two decreasing beneficial weights (15 % and 20 %), proportionally adjusting non-beneficial weights. The SA confirmed the consistency and robustness of the rankings, with Kiargiri (0.083), Baboloo (0.530), Karog (0.535), and Phayal Road (0.663) maintaining top positions despite varying weight configurations. This approach offers a reliable, adaptable framework for landfill site selection in hilly urban areas, supporting waste management, sustainable development and environmental conservation.
Sensitivity-analysis, Standardization. Simplification. Waste, Analytical hierarchy process, HD62, Shimla, Landfill site selection, Environmental technology. Sanitary engineering, VIKOR, TD1-1066, GIS-MCDM
Sensitivity-analysis, Standardization. Simplification. Waste, Analytical hierarchy process, HD62, Shimla, Landfill site selection, Environmental technology. Sanitary engineering, VIKOR, TD1-1066, GIS-MCDM
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
