
arXiv: 2406.03519
High utility and rigorous data privacy are of the main goals of a federated learning (FL) system, which learns a model from the data distributed among some clients. The latter has been tried to achieve by using differential privacy in FL (DPFL). There is often heterogeneity in clients privacy requirements, and existing DPFL works either assume uniform privacy requirements for clients or are not applicable when server is not fully trusted (our setting). Furthermore, there is often heterogeneity in batch and/or dataset size of clients, which as shown, results in extra variation in the DP noise level across clients model updates. With these sources of heterogeneity, straightforward aggregation strategies, e.g., assigning clients aggregation weights proportional to their privacy parameters will lead to lower utility. We propose Robust-HDP, which efficiently estimates the true noise level in clients model updates and reduces the noise-level in the aggregated model updates considerably. Robust-HDP improves utility and convergence speed, while being safe to the clients that may maliciously send falsified privacy parameter to server. Extensive experimental results on multiple datasets and our theoretical analysis confirm the effectiveness of Robust-HDP. Our code can be found here.
Proceedings of the 41 st International Conference on Machine Learning, Vienna, Austria. PMLR 235, 2024
FOS: Computer and information sciences, Computer Science - Machine Learning, Computer Science - Cryptography and Security, Computer Science - Distributed, Parallel, and Cluster Computing, Distributed, Parallel, and Cluster Computing (cs.DC), Cryptography and Security (cs.CR), Machine Learning (cs.LG)
FOS: Computer and information sciences, Computer Science - Machine Learning, Computer Science - Cryptography and Security, Computer Science - Distributed, Parallel, and Cluster Computing, Distributed, Parallel, and Cluster Computing (cs.DC), Cryptography and Security (cs.CR), Machine Learning (cs.LG)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
