Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Underground Spacearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Underground Space
Article . 2025 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Underground Space
Article . 2025
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Detecting soil mixing, grain size distribution, and clogging potential of tunnel excavation face by classification-regression algorithms using EPBM operational data

Authors: Sharmin Sarna; Marte Gutierrez;

Detecting soil mixing, grain size distribution, and clogging potential of tunnel excavation face by classification-regression algorithms using EPBM operational data

Abstract

Earth pressure balance machine (EPBM) operation is sensitive to the properties of the excavated soil due to the requirements of proper soil conditioning and maintenance of necessary chamber pressure. However, soil properties are invariably only available at a limited number of borehole explorations and soil samplings conducted during the subsoil investigation. Thus, it is crucial to identify properties of the tunnel excavation face, such as clay-sand mixed conditions, grain size distributions, and clogging potential along the whole alignment beside the few borehole locations to attain optimally efficient EPBM operation. Therefore, this paper presents the development of machine learning prediction models (i.e., classifiers and regressors) to estimate the properties of the tunnel excavation face using EPBM operational data collected during the tunneling operation as input features. Geotechnical data collected from boreholes and soil samples can be used to validate prediction models and calibrate them. To develop such models, the Northgate Link Extension (N125) tunneling project, constructed in Seattle, Washington, the USA, is used to capture and identify the true ground conditions. The results indicate successful prediction performances by the models, providing indication that EPBM parameters are crucial pointers of the tunnel excavation face properties to help attain optimally efficient EPBM operation.

Keywords

Clogging, Machine learning, TA703-712, EPBM tunneling, Mixed soil, Engineering geology. Rock mechanics. Soil mechanics. Underground construction, Grain size, Stochastic hill climbing-adaptive steps

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold