
Inhibitory dynamics plays an important role in the information processing of biological spiking neurons, where incoming stimuli weaken the activity level of neurons. Due to the lack of prohibitive physical effects in photonics, the realization of the photonic spiking neuron (PSN) with intrinsic inhibitory dynamics and the application of efficient inhibitory dynamics in the optical domain have been challenging. Herein, we propose a PSN with all-optical inhibitory dynamics, which is achieved by intrinsic backscattering from the unidirectional-emitted semi-conductor ring laser (SRL) to the master laser. The photonic spiking dynamics of the SRL operating in unidirectional mode were investigated, demonstrating the computational properties of the PSN as a leaky integrate-and-fire neuron. We prove that as the backscattering intensity increases, the number of spikes generated under the same input signal decreases. Under the influence of backscattering, the number of spikes fired increases with the input signal rate. In the speech signal classification task, the classification accuracy improves from 89% to 94% under the influence of inhibitory dynamics. This suggests that the presence of inhibitory dynamics helps filter out unwanted interference information. The results show the potential of backscattering-based inhibition dynamics for facilitating advanced neuromorphic information processing.
optical injection locking, photonic spiking neuron, semiconductor ring laser, Neuromorphic computing, inhibitory dynamics, Applied optics. Photonics, QC350-467, Optics. Light, backscattering, TA1501-1820
optical injection locking, photonic spiking neuron, semiconductor ring laser, Neuromorphic computing, inhibitory dynamics, Applied optics. Photonics, QC350-467, Optics. Light, backscattering, TA1501-1820
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
