Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2024 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2024
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

RMDNet-Deep Learning Paradigms for Effective Malware Detection and Classification

Authors: S. Puneeth; Shyam Lal; Mahendra Pratap Singh; B. S. Raghavendra;

RMDNet-Deep Learning Paradigms for Effective Malware Detection and Classification

Abstract

Malware analysis and detection are still essential for maintaining the security of networks and computer systems, even as the threat landscape shifts. Traditional approaches are insufficient to keep pace with the rapidly evolving nature of malware. Artificial Intelligence (AI) assumes a significant role in propelling its design to unprecedented levels. Various Machine Learning (ML) based malware detection systems have been developed to combat the ever-changing characteristics of malware. Consequently, there is a growing interest in exploring advanced techniques that leverage the power of Deep Learning (DL) to effectively analyze and detect malicious software. DL models demonstrate enhanced capabilities for analyzing extensive sequences of system calls. This paper proposes a Robust Malware Detection Network (RMDNet) for effective malware detection and classification. The proposed RMDNet model branches the input and performs depth-wise convolution and concatenation operations. The experimental results of the proposed RMDNet and existing DL models are evaluated on 48240 malware and binary visualization image dataset with RGB format. Also on the multi-class malimg and dumpware-10 datasets with grayscale format. The experimental results on each of these datasets demonstrate that the proposed RMDNet model can effectively and accurately categorize malware, outperforming the most recent benchmark DL algorithms.

Keywords

concatenation, cyber security, convolution, deep learning, depthwise convolution, Electrical engineering. Electronics. Nuclear engineering, Binary classification, TK1-9971

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold