Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/iske47...
Article . 2019 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
DBLP
Conference object
Data sources: DBLP
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Weighted Multi-View Data Clustering via Joint Non-Negative Matrix Factorization

Authors: Ghufran Ahmad Khan; Jie Hu 0007; Tianrui Li 0001; Bassoma Diallo; Qianqian Huang;

Weighted Multi-View Data Clustering via Joint Non-Negative Matrix Factorization

Abstract

In recent years, datasets which exist in present world are comprising of various representations of the data or in multiview environment, which frequently give the important data to each other. Multi-view clustering based on Non-negative matrix factorization (NMF) has turned to be a very hot direction of research in the field of Pattern Reognition, Machine Learning (ML), and data mining. and data mining due to unsupervised confuse information of Numerous Views. The main problem of employing NMF to multi-view clustering is how to define the factorizations to give significant and commensurate clustering solutions. Specially, multi-view clustering based NMF has achieved extensive attention due to its dimensionality reduction property. Existing methods based on NMF barely produced meaningful clustering solution from heterogeneous numerous views due to their complementary behaviors. To address this issue, we design a innovative NMF technique based Multiview clustering approach, which gives the more meaningful and compatible clustering solution over Numerous Views. The main outcome of the work, is to a design combined NMF method with view weight and constraint co-efficient which will bring the clustering solution to a common point for each view. The effectiveness of propose method is validated by conducting the experiments on real-world datasets.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!