
Autonomous learning and adaptation of robotic trajectories by complex robots in unstructured environments, for example with the use of reinforcement learning, very quickly encounters problems where the dimensionality of the search space is beyond the range of practical use. Different methods of reducing the dimensionality have been proposed in the literature. In this paper we explore the use of deep autoencoders, where the dimensionality of autoencoder latent space is low. However, a database of actions is required to train a deep autoencoder network. The paper presents a study on the number of required database samples in order to achieve dimensionality reduction without much loss of information.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
