Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Efficient encoding and decoding schemes for wireless underwater communication systems

Authors: Nejah Nasri; Laurent Andrieux; Abdennaceur Kachouri; Mounir Samet;

Efficient encoding and decoding schemes for wireless underwater communication systems

Abstract

This work focuses on presenting a novel high efficiency channel encoding for transmitting acoustical signals in the hope of improving wireless underwater communication. Yet, water puts a damper on communication capacity, slowing down the signal propagation and creating background noise and echoes. For thus systems and methods for implementing a control channel, e.g., in underwater communication system, are presented below. Aspects of the channel structures used to implement the control channel described herein, can improve error detection capabilities, reduce decoding complexity, and increase transmission efficiency. In certain aspects, transmission efficiency can be increased through using CRC encoding. A circular trellis check and Viterbi decoding can also be used to increase efficiency and maintain error detection capabilities. Symbol Error Rate (SER) can be reduced in embodiments described herein over that of tail-biting convolutional coding with a CRC. Furthermore, error detection offered by Reed Solomon encoder can well compensate underwater noise. Additionally, the encoder packet size can be fixed in order to facilitate decoding and reducing receiver complexity.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!