Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Computational Method...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Computational Methods in Applied Mathematics
Article . 2003 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2003
Data sources: zbMATH Open
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Solution of Some Differential Equations of Quantum Physics by the Numerical Functional Integration Method

Solution of some differential equations of quantum physics by the numerical functional integration method
Authors: Lobanov, Y. Y.; Zhidkov, E. P.;

Solution of Some Differential Equations of Quantum Physics by the Numerical Functional Integration Method

Abstract

Abstract The application of the numerical functional integration method to the solution of differential equations in quantum physics is discussed. We have developed a method of numerical evaluation of functional integrals in abstract complete separable metric spaces, which proves to have important advantages over the conventional Monte Carlo method of path integration. One of the considered applications is the investigation of open quantum systems (OQS), i.e., systems interacting with their environment. The density operator of OQS satisfies the known Lindblad differential equation. We have obtained the expression for matrix elements of this operator in the form of the double conditional Wiener integral and considered its application to some problems of nuclear physics. Another application is the solution of the Scr¨odinger equation with imaginary time and anticommuting variables for studying many-fermion systems. We have developed a numerical method based on functional integration over ordered subspaces. The binding energies of some nuclei are computed using this method. Comparison of the results with those obtained by other authors and with experimental values is presented.

Related Organizations
Keywords

open quantum system, approximation formula, Lindblad differential equation, imaginary time, functional integrals in abstract complete separable metric spaces, anticommuting variables, functional integral, open quantum systems, binding energy, Computational methods for problems pertaining to quantum theory, computations, many fermion systems, Set functions and measures and integrals in infinite-dimensional spaces (Wiener measure, Gaussian measure, etc.), Many-body theory; quantum Hall effect, Numerical methods of time-dependent statistical mechanics, Quantum stochastic calculus, propagator, density matrix, PDEs in connection with quantum mechanics, Wiener measure

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
hybrid
Related to Research communities