
Summary: We propose a new value iteration method for the classical average cost Markovian decision problem, under the assumption that all stationary policies are unichain and that, furthermore, there exists a state that is recurrent under all stationary policies. This method is motivated by a relation between the average cost problem and an associated stochastic shortest path problem. Contrary to the standard relative value iteration, our method involves a weighted sup-norm contraction, and for this reason it admits a Gauss-Seidel implementation. Computational tests indicate that the Gauss-Seidel version of the new method substantially outperforms the standard method for difficult problems.
dynamic programming, Markov and semi-Markov decision processes, value iteration, Dynamic programming in optimal control and differential games, average cost, Programming involving graphs or networks
dynamic programming, Markov and semi-Markov decision processes, value iteration, Dynamic programming in optimal control and differential games, average cost, Programming involving graphs or networks
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 26 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
