Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.1...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1007/978-3-...
Book . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
OAPEN Library
Book . 2025
License: CC BY
Data sources: OAPEN Library
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Single-Event Effects, from Space to Accelerator Environments

Analysis, Prediction and Hardening by Design
Authors: Aguiar, Ygor Quadros de; Wrobel, Frédéric; Autran, Jean-Luc; García Alía, Rubén;

Single-Event Effects, from Space to Accelerator Environments

Abstract

This book describes the fundamental concepts underlying radiation-induced failure mechanisms in electronic components operating in harsh environments, such as in space missions or in particle accelerators. In addition to providing an extensive overview of the dynamics and composition of different radiation environments, the authors discuss the failure mechanisms, known as single-event effects (SEEs), and dedicated failure modeling and prediction methodologies. Additionally, novel radiation-hardening-by-design (RHBD) techniques at physical layout and circuit levels are described. Readers who are newcomers to this field will learn the fundamental concepts of particle interaction physics and electronics hardening design, starting from the composition and dynamics of radiation environments and their effects on electronics, to the qualification and hardening of components. Experienced readers will enjoy the comprehensive discussion of the state-of-the-art in modeling, simulation, and analysis of radiation effects developed in the recent years, especially the outcome of the recent European project, RADSAGA. Describes both the fundamental concepts underlying radiation effects in electronics and state-of-the-art hardening methodologies Addresses failure mechanisms, known as single-event effects (SEEs), and dedicated failure modeling and prediction methodologies Reveals novel radiation-hardening-by-design (RHBD) techniques at physical layout and circuit levels Offers readers the first book in which particle accelerator applications will be extensively included in the radiation effects context This is an open access book.

Keywords

Radiation Hardening by Process, Soft Errors from Particle to Circuits, Single Event Effects in Aerospace, RADSAGA, thema EDItEUR::T Technology, Engineering, Agriculture, Industrial processes::TR Transport technology and trades::TRP Aerospace and aviation technology, Radiation Effects on Integrated Circuits and Systems, thema EDItEUR::T Technology, Engineering, Agriculture, Industrial processes::TJ Electronics and communications engineering::TJF Electronics engineering::TJFC Electronics: circuits and components, Radiation Hardening by Design, thema EDItEUR::T Technology, Engineering, Agriculture, Industrial processes::TT Other technologies and applied sciences::TTD Space science::TTDS Astronautics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Top 10%
Top 10%
Green
hybrid