Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Unification of firefly algorithm with density-based spatial clustering for segmentation of medical images

Authors: Bandana Bali; Brij Mohan Singh;

Unification of firefly algorithm with density-based spatial clustering for segmentation of medical images

Abstract

This paper proposes a computer-aided approach for brain image segmentation to figure out various characteristics of digital images which are responsible for the identification of brain tumour with MRI images. The proposed Density-Based Spatial Clustering Fused with Firefly (DB-FF) method is based on Density-Based Spatial Clustering and Firefly Algorithm which has a significant place in nature-inspired computing techniques. In this research, the solutions of the firefly algorithm have been improved by the density-based spatial clustering algorithm and a soft computing criterion has also been used as a fitness function. The proposed method has been tested on commonly used images from Harvard Whole Brain Atlas and the results of this method have been compared with other standard benchmarks from the survey. The proposed DB-FF method achieved better segmentation than standard segmentation quality metrics such as normalised peak signal to noise, normalised root square mean error and structural similarity index metric. Matlab has been used for implementation and observation. The result demonstrates that the proposed method has a better and robust performance as compared with the existing MRI segmentation models.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!