Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2025
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Deeply Supervised Multi-Task Autoencoder for Biological Brain Age estimation using three dimensional T$_1$-weighted magnetic resonance imaging

Authors: Kanwal, Mehreen; Son, Yunsik;

Deeply Supervised Multi-Task Autoencoder for Biological Brain Age estimation using three dimensional T$_1$-weighted magnetic resonance imaging

Abstract

Accurate estimation of biological brain age from three dimensional (3D) T$_1$-weighted magnetic resonance imaging (MRI) is a critical imaging biomarker for identifying accelerated aging associated with neurodegenerative diseases. Effective brain age prediction necessitates training 3D models to leverage comprehensive insights from volumetric MRI scans, thereby fully capturing spatial anatomical context. However, optimizing deep 3D models remains challenging due to problems such as vanishing gradients. Furthermore, brain structural patterns differ significantly between sexes, which impacts aging trajectories and vulnerability to neurodegenerative diseases, thereby making sex classification crucial for enhancing the accuracy and generalizability of predictive models. To address these challenges, we propose a Deeply Supervised Multitask Autoencoder (DSMT-AE) framework for brain age estimation. DSMT-AE employs deep supervision, which involves applying supervisory signals at intermediate layers during training, to stabilize model optimization, and multitask learning to enhance feature representation. Specifically, our framework simultaneously optimizes brain age prediction alongside auxiliary tasks of sex classification and image reconstruction, thus effectively capturing anatomical and demographic variability to improve prediction accuracy. We extensively evaluate DSMT-AE on the Open Brain Health Benchmark (OpenBHB) dataset, the largest multisite neuroimaging cohort combining ten publicly available datasets. The results demonstrate that DSMT-AE achieves state-of-the-art performance and robustness across age and sex subgroups. Additionally, our ablation study confirms that each proposed component substantially contributes to the improved predictive accuracy and robustness of the overall architecture.

Keywords

FOS: Computer and information sciences, Artificial Intelligence (cs.AI), Artificial Intelligence, Computer Vision and Pattern Recognition (cs.CV), Image and Video Processing (eess.IV), FOS: Electrical engineering, electronic engineering, information engineering, Image and Video Processing, Computer Vision and Pattern Recognition

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
Related to Research communities