
In this paper, we have considered the distributed scheduling problem for channel access in TDMA wireless mesh networks. The problem is to assign time-slot(s) for nodes to access the channels, and it is guaranteed that nodes can communicate with all their one-hop neighbors in the assigned time-slot(s). And the objective is to minimize the cycle length, i.e., the total number of different time-slots in one scheduling cycle. In single-channel ad hoc networks, the best known result for this problem is proved to be K 2 in arbitrary graphs (IEEE Trans Comput C-36(6):729---737, 1987) and 25K in unit disk graphs (IEEE/ACM Trans Netw pp 166---177, 1993) with K as the maximum node degree. There are multiple channels in wireless mesh networks, and different nodes can use different control channels to reduce congestion on the control channels. In this paper, we have considered two scheduling models for wireless mesh networks. The first model is that each node has two radios, and the scheduling is simultaneously done on the two radios. We have proved that the upper bound of the cycle length in arbitrary graphs can be 2K. The second model is that the time-slots are scheduled for the nodes regardless of the number of radios on them. In this case, we have proved that the upper bound can be (4K?2). We also have proposed greedy algorithms with different criterion. The basic idea of these algorithms is to organize the conflicting nodes by special criterion, such as node identification, node degree, the number of conflicting neighbors, etc. And a node cannot be assigned to a time-slot(s) until all neighbor nodes, which have higher criterion and might conflict with the current node, are assigned time-slot(s) already. All these algorithms are fully distributed and easy to realize. Simulations are also done to verify the performance of these algorithms.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 15 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
