Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Journa...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
International Journal of Statistics in Medical Research
Article . 2025 . Peer-reviewed
License: CC BY NC
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Determination of Alzheimer's Disease Stages by Artificial Learning Algorithms

Authors: Bulut, Nurgül; Çakar, Tuna; Arslan, İlker; Akıncı, Zeynep Karaoğlu; Oner, Kevser Setenay;

Determination of Alzheimer's Disease Stages by Artificial Learning Algorithms

Abstract

Introduction: This study aims to determine the stages of Alzheimer's disease (AD) using different machine learning algorithms, and compares the performance of these models. Methods: Demographic, genetic, and neurocognitive inventory data from the National Alzheimer's Coordinating Center (NACC) database as well as brain volume/thickness data from magnetic resonance imaging (MRI) scans were used. Deep Neural Networks, Ordinal Logistic Regression, Random Forest, Gaussian Naive Bayes, XGBoost, and LightGBM models were used to identify four different ordinal stages of AD. Results: Although the performance measures of the developed models were similar, the highest classification rate of AD stages was achieved by the Random Forest model (accuracy: 0.86; F1 score: 0.86; AUC: 0.95). The outputs of the model with the best performance were explained by the SHapley Addictive exPlanations (SHAP) method. Conclusions: This indicates that non-invasive markers and machine learning models can be used effectively in early diagnosis and decision support systems to predict stages of AD.

Keywords

Matplotlib 3.6.0, Adult, Explainable Artificial Intelligence, Scikit-Learn 1.1.3, Major Clinical Study, Neuropsychiatric Inventory, Deep Neural Network, Python Programming Language Version 3.10, Learning Algorithm, Alzheimer's Disease, Sensitivity and Specificity, Article, Machine Learning, Python Libraries Numpy 1.23.0, Artificial Intelligence, Alzheimer Disease, Controlled Study, Neuropathology, Artificial Learning Algorithm, Aged, Principal Component Analysis, Tensorflow 2.10, Nuclear Magnetic Resonance Imaging, Random Forest, Receiver Operating Characteristic, National Alzheimer's Coordinating Center, Depression, Bayesian Learning, Geriatric Depression Scale, Machine Learning Algorithm, Mini Mental State Examination, Decision Support System, Shapley Addictive Explanations, Statsmodel 0.13.5, Logistic Regression Analysis, Montreal Cognitive Assessment, Physician, Pandas 1.5.0, Diagnostic Test Accuracy Study, Cognitive Defect, XGBoost, Human

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
hybrid
Related to Research communities