Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Electronic Archive o...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Mechanics and Advanced Technologies
Article . 2019 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Mechanics and Advanced Technologies
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The wear resistance research of the rail contact surface depending on the grinding process

Authors: Protsenko, Pavlo; Borodii, Yurii; Bobyr, Mykola; Uhlmann, Eckart; Thalau, Janis; Lypovka, Pavlo;

The wear resistance research of the rail contact surface depending on the grinding process

Abstract

Background. Continuous mechanical loads on the rails during its contact with the wheel lead to an accumulation of residual stresses in the surface layers of the rails, resulting in fast-growing fatigue cracks. In addition, the interaction of the wheel and the rail leads to micro-and macro-slip during their contact, abrasive wear, as well as plastic deformation of the rail. Rail grinding is the repair method by which defective material layers removes from the rail surface, provides the necessary accuracy of size and shape as well as surface quality. Objective. The aim of the work is to determine the effect of grinding on the tribological properties of the rail surface and establish the optimal parameters of the grinding process to ensure the best wear resistance of the rail surface. Methods. The research on wear and contact damage of samples of surfaces cut from grinding rails conducted on a friction machine M-22M. The studies were carried out by dry friction of a sample (cut from a rail) with a counter-sample from the material used in the manufacture of railway wheels, for 1 hour, the friction path was 3.60 km. Samples were weighed on a VLR-200 balance before and after the study was performed on the friction machine. As a result, the mass wear value was determined for each sample. Results. Based on the results of tribological studies, we obtained graphical dependencies of the wear intensity on the hardness of surfaces of samples and histograms which showing the effect of grinding process parameters on the amount of the wear intensity of samples. In the work was investigated influence the next main parameters of the grinding process on wear resistance there are the temperature of the rail, depth of cut, grinding wheel speed. The results of the work can find practical application in railway transport when repairing rails by grinding. Conclusions. Based on the analysis of experimental data, the empirical relationship revealed between the depth of cut, the surface hardness of the sample and the intensity of its wear. The nature of the influence of grinding process parameters (rail temperature, depth of cut, grinding wheel speed) on the wear resistance of the rail surface is established. The most optimal values of the process parameters that provide greater wear resistance of the rail surface are depth of cut - 0.007 mm, grinding wheel speed - 30 m/s, rail temperature - 20°C (it is better to conduct the processing of rails in the warm season). The results of the work can find practical application in railway transport when repairing rails by grinding.

Country
Ukraine
Keywords

tribological properties, Mechanics of engineering. Applied mechanics, TA349-359, поверхнева твердість, трибологічні властивості, wear intensity, шліфування рейок, трибологические свойства, поверхностная твердость, rail grinding, surface hardening, интенсивность изнашивания, інтенсивність зношування, шлифование рельсов

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
gold