Downloads provided by UsageCounts
handle: 2117/99395
Proton Magnetic Resonance Spectroscopy (1H MRS) has proven its diagnostic potential in a variety of conditions. However, MRS is not yet widely used in clinical routine because of the lack of experts on its diagnostic interpretation. Although data-based decision support systems exist to aid diagnosis, they often take for granted that the data is of good quality, which is not always the case in a real application context. Systems based on models built with bad quality data are likely to underperform in their decision support tasks. In this study, we propose a system to filter out such bad quality data. It is based on convex Non-Negative Matrix Factorization models, used as a dimensionality reduction procedure, and on the use of several classifiers to discriminate between good and bad quality data.
Peer Reviewed
:Informàtica::Intel·ligència artificial::Aprenentatge automàtic [Àrees temàtiques de la UPC], Convex non-negative matrix factorization, Àrees temàtiques de la UPC::Informàtica::Intel·ligència artificial::Aprenentatge automàtic, Quality control, Decision support systems, Brain tumors, Sistemes d'ajuda a la decisió, Pattern recognition, Magnetic resonance spectroscopy, Machine learning, Brain -- Tumors -- Diagnosis, Cervell -- Tumors -- Diagnòstic
:Informàtica::Intel·ligència artificial::Aprenentatge automàtic [Àrees temàtiques de la UPC], Convex non-negative matrix factorization, Àrees temàtiques de la UPC::Informàtica::Intel·ligència artificial::Aprenentatge automàtic, Quality control, Decision support systems, Brain tumors, Sistemes d'ajuda a la decisió, Pattern recognition, Magnetic resonance spectroscopy, Machine learning, Brain -- Tumors -- Diagnosis, Cervell -- Tumors -- Diagnòstic
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
| views | 51 | |
| downloads | 66 |

Views provided by UsageCounts
Downloads provided by UsageCounts