
The sheet beam traveling-wave tube (SBTWT) with staggered double vane (SDV) structure has attracted much attention as a board band and powerful terahertz and millimeter-wave source. In this paper, the velocity taper for SDV structure is optimized with a recently proposed swarm-intelligence (SI) based optimization algorithm named dragonfly algorithm (DA) in order to enhance the beam-wave interaction efficiency in sheet beam TWT. The optimization result of this algorithm is compared with other commonly used algorithms. The taper optimized with DA is verified with CST particle in cell (PIC) simulations. The efficiency of the optimized structure has been greatly increased in both optimization and PIC simulations.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
