Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2023
License: CC BY
Data sources: Datacite
DBLP
Article
Data sources: DBLP
DBLP
Article
Data sources: DBLP
versions View all 5 versions
addClaim

Exploring Parameter-Efficient Fine-Tuning Techniques for Code Generation with Large Language Models

Authors: Martin Weyssow; Xin Zhou; Kisub Kim; David Lo; Houari Sahraoui;

Exploring Parameter-Efficient Fine-Tuning Techniques for Code Generation with Large Language Models

Abstract

Large language models (LLMs) demonstrate impressive capabilities to generate accurate code snippets given natural language intents in a zero-shot manner, i.e., without the need for specific fine-tuning. While prior studies have highlighted the advantages of fine-tuning LLMs, this process incurs high computational costs, making it impractical in resource-scarce environments, particularly for models with billions of parameters. To address these challenges, previous research explored in-context learning (ICL) and retrieval-augmented generation (RAG) as strategies to guide the LLM generative process with task-specific prompt examples. However, ICL and RAG introduce inconveniences, such as the need for designing contextually relevant prompts and the absence of learning task-specific parameters, thereby limiting downstream task performance. In this context, we foresee parameter-efficient fine-tuning (PEFT) as a promising approach to efficiently specialize LLMs to task-specific data while maintaining reasonable resource consumption. In this article, we deliver a comprehensive study of PEFT techniques for LLMs in the context of automated code generation. Our comprehensive investigation of PEFT techniques for LLMs reveals their superiority and potential over ICL and RAG across a diverse set of LLMs and three representative Python code generation datasets: Conala, CodeAlpacaPy, and APPS. Furthermore, our study highlights the potential for tuning larger LLMs and significant reductions in memory usage by combining PEFT with quantization. Therefore, this study opens opportunities for broader applications of PEFT in software engineering scenarios.

Keywords

Software Engineering (cs.SE), FOS: Computer and information sciences, Computer Science - Software Engineering, Computer Science - Machine Learning, Computer Science - Computation and Language, Computation and Language (cs.CL), Machine Learning (cs.LG)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
20
Top 10%
Top 10%
Top 10%
Green