Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Monthly Notices of t...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Monthly Notices of the Royal Astronomical Society
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL-INSU
Article . 2024
Data sources: HAL-INSU
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Magnetic field, magnetospheric accretion, and candidate planet of the young star GM Aurigae observed with SPIRou

Authors: Zaire, B; Donati, J -F; Alencar, S; Bouvier, J; Moutou, C; Bellotti, S; Carmona, A; +8 Authors

Magnetic field, magnetospheric accretion, and candidate planet of the young star GM Aurigae observed with SPIRou

Abstract

ABSTRACT This paper analyses spectropolarimetric observations of the classical T Tauri star (CTTS) GM Aurigae collected with SPIRou, the near-infrared spectropolarimeter at the Canada–France–Hawaii Telescope, as part of the SLS and SPICE Large Programs. We report for the first time results on the large-scale magnetic field at the surface of GM Aur using Zeeman Doppler imaging. Its large-scale magnetic field energy is almost entirely stored in an axisymmetric poloidal field, which places GM Aur close to other CTTSs with similar internal structures. A dipole of about 730 G dominates the large-scale field topology, while higher order harmonics account for less than 30 per cent of the total magnetic energy. Overall, we find that the main difference between our three reconstructed maps (corresponding to sequential epochs) comes from the evolving tilt of the magnetic dipole, likely generated by non-stationary dynamo processes operating in this largely convective star rotating with a period of about 6 d. Finally, we report a $5.5\sigma$ detection of a signal in the activity-filtered radial velocity data of semi-amplitude $110\pm 20$ m s$^{-1}$ at a period of $8.745\pm 0.009$ d. If attributed to a close-in planet in the inner accretion disc of GM Aur, it would imply that this planet candidate has a minimum mass of $1.10 \pm 0.30\, M_\mathrm{Jup}$ and orbits at a distance of $0.082 \pm 0.002$ au.

Keywords

planets and satellites: detection, variables, detection, T Tauri, 530, Herbig Ae/Bestars individual GM Aur -planets and satellites detection, [SDU] Sciences of the Universe [physics], stars: individual: GM Aur, formation -stars, Herbig Ae/Bestars, /dk/atira/pure/subjectarea/asjc/1900/1912, techniques polarimetric -stars formation -stars magnetic field -stars variables T Tauri, individual, stars: variables: T Tauri, stars: formation, stars: magnetic field, Herbig Ae/Be, 520, polarimetric -stars, techniques: polarimetric, [SDU]Sciences of the Universe [physics], name=Space and Planetary Science, GM Aur -planets and satellites, /dk/atira/pure/subjectarea/asjc/3100/3103, name=Astronomy and Astrophysics, magnetic field -stars, techniques

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Top 10%
Green
gold