Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2024 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2024
Data sources: DOAJ
DBLP
Article
Data sources: DBLP
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Denoising Raman Spectra Using Autoencoder for Improved Analysis of Contamination in HDD

Authors: Sarun Gulyanon; Somrudee Deepaisarn; Sorawit Chokphantavee; Sirawit Chokphantavee; Phuriphan Prathipasen; Seksan Laitrakun; Pakorn Opaprakasit; +6 Authors

Denoising Raman Spectra Using Autoencoder for Improved Analysis of Contamination in HDD

Abstract

Small particles contaminated in hard disk drives (HDD) potentially cause damage to the device, leading to data loss. Hard disk industries, therefore, pay attention to identifying the types and sources of these contaminants. However, expensive analytical procedures are required for precise identification when testing samples are relatively small and scarce. A traditional tool, Raman spectroscopy, provides spectra with poor signal-to-noise ratios when dealing with sub-micron particles. Hence, human experts find noisy Raman spectral identification a real burden. In this study, we proposed a practically applicable pipeline, consisting of a denoising autoencoder with the spectral gradient correlation for the classification task, followed by the novel validation step based on an ensemble of CNN models to remove the predictions with low certainty. In the experiments, three different backbone models for denoising autoencoders are studied, including multilayer perceptron (MLP), convolutional neural network (CNN), and U-Net. While the ensemble model consists of eight different CNN models that act as independent machine experts whose votes indicate agreement with the correlation approach. When less agreement is observed, the sample is said to be unidentified and rejected from the classification task. With our validation step, the results bestow exceptionally high classification accuracy of 0.965, 0.955, and 0.976 for spectra undergoing our proposed pipeline with MLP, CNN, and U-Net autoencoder denoising models, respectively. This highlights the effectiveness of our proposed pipeline in practical application.

Keywords

machine learning, Raman spectroscopy, denoising, deep learning, nanoparticles, Electrical engineering. Electronics. Nuclear engineering, polymers, TK1-9971

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold