
The Collatz conjecture, which posits that any positive integer will eventually reach 1 through a specific iterative process, is a classic unsolved problem in mathematics. This research focuses on designing an efficient algorithm to compute the stopping time of numbers in the Collatz sequence, achieving significant computational improvements. By leveraging structural patterns in the Collatz tree, the proposed algorithm minimizes redundant operations and optimizes computational steps. Unlike prior methods, it efficiently handles extremely large numbers without requiring advanced techniques such as memoization or parallelization. Experimental evaluations confirm computational efficiency improvements of approximately 28% over state-of-the-art methods. These findings underscore the algorithm's scalability and robustness, providing a foundation for future large-scale verification of the conjecture and potential applications in computational mathematics.
FOS: Computer and information sciences, Algorithm optimization, computational mathematics, bitwise operations, Mathematical Software, Collatz conjecture, Electrical engineering. Electronics. Nuclear engineering, Mathematical Software (cs.MS), Collatz tree, high-performance algorithms, TK1-9971
FOS: Computer and information sciences, Algorithm optimization, computational mathematics, bitwise operations, Mathematical Software, Collatz conjecture, Electrical engineering. Electronics. Nuclear engineering, Mathematical Software (cs.MS), Collatz tree, high-performance algorithms, TK1-9971
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
