Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Theoretical Computer Science
Article . 2025 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2025
Data sources: zbMATH Open
https://dx.doi.org/10.48550/ar...
Article . 2024
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
DBLP
Article
Data sources: DBLP
DBLP
Article
Data sources: DBLP
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Efficient deterministic algorithms for maximizing symmetric submodular functions

Authors: Zongqi Wan; Jialin Zhang; Xiaoming Sun; Zhijie Zhang;

Efficient deterministic algorithms for maximizing symmetric submodular functions

Abstract

Symmetric submodular maximization is an important class of combinatorial optimization problems, including MAX-CUT on graphs and hyper-graphs. The state-of-the-art algorithm for the problem over general constraints has an approximation ratio of $0.432$. The algorithm applies the canonical continuous greedy technique that involves a sampling process. It, therefore, suffers from high query complexity and is inherently randomized. In this paper, we present several efficient deterministic algorithms for maximizing a symmetric submodular function under various constraints. Specifically, for the cardinality constraint, we design a deterministic algorithm that attains a $0.432$ ratio and uses $O(kn)$ queries. Previously, the best deterministic algorithm attains a $0.385-ε$ ratio and uses $O\left(kn (\frac{10}{9ε})^{\frac{20}{9ε}-1}\right)$ queries. For the matroid constraint, we design a deterministic algorithm that attains a $1/3-ε$ ratio and uses $O(kn\log ε^{-1})$ queries. Previously, the best deterministic algorithm can also attain $1/3-ε$ ratio but it uses much larger $O(ε^{-1}n^4)$ queries. For the packing constraints with a large width, we design a deterministic algorithm that attains a $0.432-ε$ ratio and uses $O(n^2)$ queries. To the best of our knowledge, there is no deterministic algorithm for the constraint previously. The last algorithm can be adapted to attain a $0.432$ ratio for single knapsack constraint using $O(n^4)$ queries. Previously, the best deterministic algorithm attains a $0.316-ε$ ratio and uses $\widetilde{O}(n^3)$ queries.

Keywords

symmetric submodular maximization, FOS: Computer and information sciences, Combinatorial optimization, Computer Science - Data Structures and Algorithms, Data Structures and Algorithms (cs.DS), deterministic algorithm, Approximation algorithms, approximation algorithm

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green