
doi: 10.1109/18.850662
Summary: Two linear codes are permutation-equivalent if they are equal up to a fixed permutation on the codeword coordinates. We present here an algorithm able to compute this permutation. It operates by determining a set of properties invariant by permutation, one for each coordinate, called a signature. If this signature is fully discriminant -- i.e., different for all coordinates -- the support of the code splits into singletons, and the same signature computed for any permutation-equivalent code will allow the reconstruction of the permutation. A procedure is described to obtain a fully discriminant signature for most linear codes. The total complexity of the support splitting algorithm is polynomial in the length of the code and exponential in the dimension of its hull, i.e., the intersection of the code with its dual.
invariant, hull, General topics in the theory of algorithms, permutation-equivalent codes, linear codes, signature, Linear codes (general theory), weight enumerator, support splitting algorithm
invariant, hull, General topics in the theory of algorithms, permutation-equivalent codes, linear codes, signature, Linear codes (general theory), weight enumerator, support splitting algorithm
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 182 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
