Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2024 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2024
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Signal to Image Conversion and Convolutional Neural Networks for Physiological Signal Processing: A Review

Authors: K. E. Ch Vidyasagar; K. Revanth Kumar; G. N. K. Anantha Sai; Munagala Ruchita; Manob Jyoti Saikia;

Signal to Image Conversion and Convolutional Neural Networks for Physiological Signal Processing: A Review

Abstract

Physiological signals obtained from electroencephalography (EEG), electromyography (EMG), and electrocardiography (ECG) provide valuable clinical information but pose challenges for analysis due to their high-dimensional nature. Traditional machine learning techniques, relying on hand-crafted features from fixed analysis windows, can lead to the loss of discriminative information. Recent studies have demonstrated the effectiveness of deep convolutional neural networks (CNNs) for robust automated feature learning from raw physiological signals. However, standard CNN architectures require two-dimensional image data as input. This has motivated research into innovative signal-to-image (STI) transformation techniques to convert one-dimensional time series into images preserving spectral, spatial, and temporal characteristics. This paper reviews recent advances in strategies for physiological signal-to-image conversion and their applications using CNNs for automated processing tasks. A systematic analysis of EEG, EMG, and ECG signal transformation and CNN-based analysis techniques spanning diverse applications, including brain-computer interfaces, seizure detection, motor control, sleep stage classification, arrhythmia detection, and more, are presented. Key insights are synthesized regarding the relative merits of different transformation approaches, CNN model architectures, training procedures, and benchmark performance. Current challenges and promising research directions at the intersection of deep learning and physiological signal processing are discussed. This review aims to catalyze continued innovations in effective end-to-end systems for clinically relevant information extraction from multidimensional physiological data using convolutional neural networks by providing a comprehensive overview of state-of-the-art techniques.

Keywords

signal-to-image conversion, machine learning, convolutional neural networks, deep learning, Biomedical signal analysis, Electrical engineering. Electronics. Nuclear engineering, physiological signals, TK1-9971

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average
gold